Texture synthesis and image analogies

15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 9

http://graphics.cs.cmu.edu/courses/15-463

Course announcements

• Please take Doodle for second make-up lecture, link on Piazza.

- Homework 3 is out.
 - Due October 12th.
 - Shorter, but longer bonus component.

Overview of today's lecture

- Reminder: non-local means.
- Texture synthesis.
- Texture by non-parametric sampling.
- Image quilting.
- Inpainting.
- Texture transfer.
- Image analogies.
- Deep learning teaser.

Slide credits

Most of these slides were adapted from:

• Kris Kitani (15-463, Fall 2016).

Some slides were inspired or taken from:

- Fredo Durand (MIT).
- James Hays (Georgia Tech).

Reminder: non-local means

Redundancy in natural images

Non-local means

No need to stop at neighborhood. Instead search *everywhere* in the image.

$$\hat{x}(i) = \frac{1}{C_i} \sum_j y(j) e^{-\frac{SSD(y(N_i) - y(N_j))}{2\sigma^2}}$$

$$w(i, j)$$

Last couple of classes: adding things to the image

This class: removing things from the image

This class: removing things from the image

Texture synthesis

Texture

- Depicts spatially repeating patterns
- Appears naturally and frequently

Texture

• Large variety of textures

Texture synthesis

Goal: create new samples of a given texture. Applications:

• hole filling

. . . .

- virtual environments
- view expansion
- texturing surfaces

How would you do texture synthesis for this sample?

Input

How would you do texture synthesis for this sample?

Input

random

tiling

Approach 1: probabilistic modeling

Basic idea:

- Compute statistics of input texture (e.g., histogram of edge filter responses).
- Generate a new texture that keeps these same statistics.

Heeger and Bergen, "Pyramid-based texture analysis/synthesis," SIGGRAPH 1995 Simoncelli and Portilla, "Texture characterization via joint statistics of wavelet coefficient magnitudes," ICIP 1998

Approach 1: probabilistic modeling

Probability distributions are hard to model well.

Any other ideas?

Texture by non-parametric sampling

Approach 2: sample from the image

Run template matching, get N best matches, and sample one at random.

What are sampling from?

Efros and Leung, "Texture synthesis by non-parametric sampling," ICCV 1999

Approach 2: sample from the image

Run template matching, get N best matches, and sample one at random.

- Similar nearby images define a <u>non-parametric</u> PDF P(p|N(p))
- By selecting a random sample, we are sampling from this PDF

Efros and Leung, "Texture synthesis by non-parametric sampling," ICCV 1999

How do you define patch similarity?

How do you define patch similarity?

• Gaussian-weighted SSD (emphasis on nearby pixels).

In what order should you synthesize?

How do you define patch similarity?

• Gaussian-weighted SSD (emphasis on nearby pixels).

In what order should you synthesize?

• Onion-peel ordering – pixels with most neighbors are synthesized first.

How do you synthesize from scratch?

How do you define patch similarity?

• Gaussian-weighted SSD (emphasis on nearby pixels).

In what order should you synthesize?

• Onion-peel ordering – pixels with most neighbors are synthesized first.

How do you synthesize from scratch?

• Pick a small patch at random from source.

Ideas from information theory

• Generate English-sounding sentences by modeling the probability of each word given the previous words (n-grams)

• Large "n" will give more structured sentences

"I spent an interesting evening recently with a grain of salt."

Claude Elwood Shannon (1916–2001)

Size of neighborhood window matters a lot

Size of neighborhood window matters a lot

patch size

Texture synthesis algorithm

While image not filled

- 1.Get unfilled pixels with filled neighbors
- 2.Sort by number of filled neighbor

3.For each pixel

a)Get top N matches of visible neighbor (Patch Distance: Gaussian-weighted SSD)

- b) Randomly select one of the matches
- c)Copy pixel value

Examples

French canvas

rafia weave

Examples

white bread

brick wall

Homage to Shannon

r Dick Gephardt was fai rful riff on the looming : nly asked, "What's your tions?" A heartfelt sigh story about the emergen es against Clinton. "Boy g people about continuin ardt began, patiently obs ;, that the legal system h g with this latest tanger thaim. them . "Whephartfe lartifelintomimen 'el ck Clirtioout omaim thartfelins fout, s aneto the ry onst wartfe lck Gephtoomimeationl sigab Chiooufit Clinut Cll riff on, hat's yordn, parut tly : ons ycontonsteht wasked, paim t sahe loo riff on l nskoneploourtfeas leil A nst Clit, "Wieontongal s k Cirtioouirtfepelong pme abegal fartfenstemem itiensteneltorydt telemephinsverdt was agemen ff ons artientont Cling peme as 1rtfe atith, "Boui s hal s fartfelt sig pedril dt ske abounutie aboutioo tfeonewas you abownthardt thatins fain, ped, ains, them, pabout wasy artnut countly d, In A h ble emthrängboomme agas fa bontinsyst Clinut i ory about continst Clipeoµinst Cloke agatiff out (stome minemen fly ardt beoraboul n, thenly as t C cons faimeme Diontont wat coutlyohgans as fan ien, phrtfaul, "Wbaut cout congagal comininga: mifmst Clivy abon al coounthalemungairt tf oun Yhe looorysta loontieph. intly on, theoplegatick 🤇 iul fatiesontly atie Diontiomt wal s f thegàe ener nthahgat's enenhirmas fan, "intchthory abons y

Hole filling

Image extrapolation

Summary

Texture synthesis using non-parametric sampling:

- Very simple
- Surprisingly good results
- Synthesis is easier than analysis!
- But very slow

Why is it so slow and how could we make it faster?

Image quilting
Summary

Observation: neighboring pixels are highly correlated.

Idea: Instead of single pixels, synthesize entire blocks

- Exactly analogous procedure as before, except we now sample P(B | N(B))
- Much faster since we synthesize all pixels in a block at once

Efros and Freeman, "Image Quilting for Texture Synthesis and Transfer," SIGGRAPH 2001

Dealing with boundaries

input texture

B1	B2
----	----

random placement of blocks

neighboring blocks constrained by overlap

Dealing with boundaries

input texture

B1	B2
----	----

random placement of blocks

B1 B2

neighboring blocks constrained by overlap

B1 B2

minimal error boundary cut

How can we achieve this?

Dealing with boundaries

overlapping blocks

overlap error

vertical boundary

minimum error boundary

How can we compute this boundary efficiently?

Failure case (Chernobyl tomatoes)

Portilla & Simoncelli

Xu, Guo & Shum

Wei & Levoy

Quilting

input image

Portilla & Simoncelli

icoles nnunnce tiarpm, nelole ewiomsir o car es eince, esoeao so ecreced rep lacy roplis so. in. ones, so. in. euogra e-11-cesiaie au m int mm fy a ccisrcineseaccoe mce dsione neientn- eice sectmn an eisnerhaus nheiathn-cicennaimnein:cephreoe hal dell eleucororin fintly for rd thon nse cingare troocuscer tfrience's fulssion an inpactnewn coisa-155 runni re . ill cos u one mo ale e on a nore maeire de wen n si omnooest oile-can usinsnnim nf intrue coreputer de nirm

Wei & Levoy

de and mathem: sprausstant int neuronthe and mathem: sprausstant int neuron ht aple-cell recepted so please ht as a funs and inferred to eptiv bing t function sd neurophysiol let cont funct; seek a esespecially if succussions on al discribe id helps us to uirivative, single conteneeeper way. We function, cell trussians (DOG) imple-cell ight a neuron it issians (DOG) imple-cell ight a neuron ussiscription of that i fuer d'an mathem rivat conceptual and him seek d, cell reco fun alth of simplefun alth of simpletion of that neuron tion of that neuron

Xu, Guo & Shum

sition—is perk a single conceptual and n of that neuribe the wealth of simpleual and matheurophysiologically¹⁻³ and simple-cell pecially if such a framewor y¹⁻³ and inferilps us to understand the amework has perhay. Whereas no get and the fumeurorDOG), difference of a no generic a single conceptual and m rence of offse the wealth of simple-ce , higher deriescribing the response of t —can be expes a function of positionhelps us to understand thription of the per way. Whereas no gonceptual an sians (DOG), differencealth of simple

Quilting

describing the response of that neuron ht as a function of position—is perhap functional description of that neuron. seek a single conceptual and mathem escribe the wealth of simple-cell recepted neurophysiologically¹⁻³ and inferred especially if such a framework has the it helps us to understand the function leeper way. Whereas no generic modussians (DOG), difference of offset C rivative of a Gaussian, higher derivati function, and so on—can be expect imple-cell receptive field, we noneth

input image

It even made the news

Bush campaign digitally altered TV ad

President Bush's campaign acknowledged Thursday that it had digitally altered a photo that appeared in a national cable television commercial. In the photo, a handful of soldiers were multiplied many times.

Inpainting

Inpainting natural scenes

Criminisi et al., "Object removal by exemplar-based inpainting," CVPR 2003

Key idea: Filling order matters

Toy inpainting example:

image with hole

raster-scan order

onion-peel

Any ideas on how to do better filling?

Key idea: Filling order matters

Toy inpainting example:

image with hole

raster-scan order

onion-peel

gradient-sensitive order

Gradient-sensitive order: Fill a pixel that

- is surrounded by other known pixels; and
- is a continuation of a strong gradient or edge.

DOGS ALLOWED

original

with hole

onion-peel fill

gradient-sensitive

onion-peel

gradient-sensitive

Texture transfer

Texture transfer

Try to explain one object with bits and pieces of another object

How would you do this?

Efros and Freeman, "Image Quilting for Texture Synthesis and Transfer," SIGGRAPH 2001

Texture transfer

Same as texture synthesis, except search for texture blocks by comparing with target image patches ("constraints")

texture sample

Some less creepy examples

source texture

target image

correspondence maps

texture transfer result

Some less creepy (?) examples

Some less creepy examples

Image analogies

Image analogies

Why stop at textures?

synthesized image

input image

Hertzmann et al., "Image analogies, " SIGGRAPH 2001

Image analogies

How would you do this?

How would you do this?

Implementation:

Define a similarity between A and B

For each patch in B:

- 1. Find a matching patch in A, whose corresponding A' also fits in well with existing patches in B'
- 2.Copy the patch in ${\tt A^\prime}$ to ${\tt B^\prime}$

Algorithm is run iteratively (coarse-to-fine)

Blurring by analogies

unfiltered source (A)

unfiltered target (B)

filtered source (A')

Edges by analogies

unfiltered source (A)

unfiltered target (B)

filtered source (A')

Artistic filters

unfiltered source (A)

unfiltered target (B)

filtered source (A')

Colorization

unfiltered source (A)

unfiltered target (B)

filtered source (A')

"Texture by numbers"

unfiltered source (A)

unfiltered target (B)

filtered source (A')

"Texture by numbers"

Super-resolution

unfiltered source (A)

unfiltered target (B)

filtered source (A')

filtered target (B')

Super-resolution

unfiltered target (B)

filtered target (B')

Deep learning teaser

A return to parametric models

Synthesised

Source

Synthesised

Synthesised

Synthesised

Synthesised

Source

Synthesised

Source

Source

Synthesised

Source

Parameter number matters

~10k parameters

~177k parameters

~852k parameters

original

Style transfer examples

References

Basic reading:

- Szeliski textbook, Section 10.5.
- Efros and Leung, "Texture Synthesis by Non-parametric Sampling," ICCV 1999.
- Efros and Freeman, "Image Quilting for Texture Synthesis and Transfer," SIGGRAPH 2001.
- Hertzmann et al., "Image analogies," SIGGRAPH 2001.
- Criminisi et al., "Object removal by exemplar-based inpainting," CVPR 2003. the titles of the above four papers should be self-explanatory.

Additional reading:

- Gatys et al., "Texture Synthesis Using Convolutional Neural Networks," NIPS 2015. texture synthesis using deep learning.
- Gatys et al., "Image Style Transfer Using Convolutional Neural Networks," CVPR 2016. implementing image analogies using deep learning.
- Luan et al., "Deep Photo Style Transfer," arXiv 2017.

implementing photo-realistic style transfer using deep learning.